Deze tool dient enkel voor informatie, we kunnen niet verantwoordelijk worden gehouden voor uw winsten of verliezen in een pokertoernooi.

poker

Inleiding tot potkansen

Basis, maar essentiële pokerconcepten omvatten kennis en begrip van potkansen en de kansen om de hand te verbeteren

Om op de lange termijn een winnende pokerhand te spelen, moet men verschillende vaardigheden hebben, waarvan de kennis van de potkansen er één is. Het is met deze kennis dat men de winstgevendheid of anderszins kan bepalen van een inzet die in een bepaalde pot wordt afgeroepen. Als het begrip nog een beetje wazig is voor u, na het lezen van de regels die volgen, zal alles veel duidelijker zijn

Maar wat bedoelen we met potkansen?

De notie van kansen drukt een kans uit dat er iets zal gebeuren, bijvoorbeeld, dat je kleurenflopperij bij de bocht of de rivier voltooid zal zijn.

Bijvoorbeeld, je hebt Jh-Th op een flop 2h-3h-7s. Jack-ten in hart, op een flop die 2 harten omvat. Je tegenstander zet een bedrag X in een pot Y in en als je de kansen van de pot kent, weet je of je de inzet van je tegenstander wel of niet zal uitbetalen, wetende dat je je hand in een verhouding Z zult voltooien.

Laten we wat details toevoegen aan ons voorbeeld om onze definitie te verduidelijken.

Een voorbeeld.

Je bent in de BB positie met je Jh-Th en je hebt een pre-flop verhoging voor de speler op de knop geroepen.

Je bent op de hoogte van de flop.

De pot is $6.

Je tegenstander zet $4 in op de flop.

Dus je moet $4 in een pot van $10 zetten (de pot voor de flop is $6 + de inzet van $4 bij de flop) als je de beurt wilt zien.

Heb je de kans om door te gaan? De kansen zullen op verschillende manieren worden uitgedrukt. Een van hen is 4:1. Met andere woorden, bij een kleurflopperij, op slechts één straat (hier, de aankomende bocht), bij 5 voorvallen, missen we 4 keer onze kleurflopperij en 1 keer slaan we er tegenaan, vandaar de uitdrukking 4:1. We zullen zeggen dat we een 4:1 kans hebben

Met andere woorden, om de juiste kansen te krijgen om de flopinzet te noemen, moet de inzet vier keer kleiner zijn dan de grootte van de pot. Aangezien de inzet 40% van de totale pot is, zal worden gezegd dat ik niet de kans heb om door te gaan. Om de rentabiliteit van een call te evalueren, moet ik de grootte van de te callen weddenschap relateren aan de grootte van de pot. Dan vergelijk ik het resultaat met mijn kansen om mijn hand te verbeteren. Op een eenvoudige manier weet ik dat ik geen weddenschap betaal die twee keer zo groot is als de pot, als ik mijn loting maar één van de vijf keer voltooi

Tot zover het basisidee. Maar er is nog veel meer te zeggen om het concept volledig te begrijpen

Laten we het houden bij ons kleurendrukvoorbeeld. We weten dat onze kansen 4:1 zijn als we op een straat vertrouwen om alleen maar onze afdruk te raken (hier, de beurt). We rekenen het zo uit, want als we de flopweddenschap noemen en de bocht is een baksteen, is de kans groot dat onze slechterik weer op de bocht gaat wedden en we de rivier niet gratis kunnen zien

Wat betreft de kans op het voltooien van onze trekking op de bocht en de rivier, zijn de kansen 2:1, d.w.z. op 3 voorvallen, 2 keer de trekking zal niet worden voltooid en 1 keer zal het worden voltooid (dit is belangrijk om te specificeren, omdat men zou kunnen denken dat een 2:1 kans aangeeft dat een gebeurtenis 1 keer op 2 zal plaatsvinden, terwijl het meer lijkt op 1 keer op 3)

Onze kansen kennen = ons helpen de winstgevendheid van een call bet in te schatten

Als we ons voorbeeld boven een beetje aanpassen, laten we zeggen dat de pot bij de flop $80 is en onze tegenstander een all-in inzet doet bij de flop van $20. Gezien onze kansen (op 2 straten, 2:1), zullen we zeggen dat we de kansen hebben om door te gaan. Laten we het voorbeeld eens in detail bekijken

twee keer verliezen we $20 (2*20 = $40)

1 keer winnen we $100 ($80 al in de pot + $20 inzet)

Win ($80) - Verlies ($40) = $40 winstgevende oproep op lange termijn

De kansen tonen daarom de winstgevendheid van een call op de lange termijn door rekening te houden met de huidige grootte van de pot en de grootte van de te callen inzet

Onze kansen zijn nooit meer dan een schatting

Deze kans is duidelijk een schatting omdat ik nooit precies weet hoeveel outs ik echt heb. Aangezien poker een spel van onvolledige informatie is, probeer ik zo goed mogelijk de kansen in te schatten met de informatie die ik heb

In het bovenstaande voorbeeld van Jh-Th zeggen we dat we 9 outs hebben omdat we de 9 kaarten in het hart tellen die nog steeds in het kaartspel zitten, maar het is nog steeds theoretisch. Ik zou veel minder outs kunnen hebben dan verwacht als alle spelers aan de tafel reeds hole cards hebben ontvangen, maar aangezien ik geen enkele mogelijkheid heb om dit te weten, neem ik aan dat ze nog steeds in het kaartspel zitten. En ik heb misschien ook meer outs dan ik had verwacht. Het sleutelwoord is 'schatting'.

Als, bijvoorbeeld, mijn tegenstander een klein paar in zijn hand heeft, zullen niet alleen de harten me een flush geven, maar alle tientallen en dommekrachten zullen me een top paar geven, voor de beste hand, dus ik zal geen negen, maar 12 outs hebben. Maar zonder volledige informatie blijf ik voorzichtig en denk ik alleen aan mijn outs voor de flush draw

Kansen vs. Kansen

Tot nu toe hebben we het over de kansen van de pot uitgedrukt als 4:1. Maar deze notatie kan ook worden omgezet in waarschijnlijkheden

Een kans van 4:1 is ook een kans van 20%. Het is belangrijk om vertrouwd te zijn met beide beoordelingen, omdat ze allebei nuttig zullen zijn

Voor de geest is een flopkans van 4:1 een beetje abstract. Ik zou liever weten dat ik mijn kleurenafdruk in de beurt 20% van de tijd raak. Het is makkelijker voor de geest om het te begrijpen. Maar als ik een weddenschap aanga, is deze notatie minder nuttig

Wetende dat mijn kansen 4:1 zijn, zal mij vertellen dat ik een $1 in $4 flopinzet kan betalen om mijn kleurenprint op de beurt te raken, maar niet een $2 in $4 inzet. Het wordt makkelijker om te vergelijken. Als ik een 4:1 kans heb op mijn loting, weet ik dat ik een $1 weddenschap in $4 kan betalen. Geïllustreerd in een 4:1 manier, weet ik dat de pot 4 keer groter zal moeten zijn dan de inzet die ik roep om in deze situatie break-even of winstgevend te zijn

Hoe bereken je je potkansen in het heetst van de strijd?

Om de winstgevendheid van een oproep op de flop bijvoorbeeld goed te kunnen berekenen, moet u deze informatie bij voorkeur kennen:

1- Hoeveel outs heb je?

2- Hoeveel moet ik bellen?

3- Hoe groot is de pot na de inzet van mijn tegenstander?

4- Wat is de rang van mijn tegenstander?

De informatie 1-2 en 3 zijn essentieel, terwijl de informatie 4 complementair is, maar nog steeds zeer nuttig. Andere informatie kan ook nuttig zijn, maar laten we deze basisinformatie kort houden

Voor de berekening van outs of kaarten die u kunnen helpen, is het belangrijk om goed te oefenen en ze uit het hoofd te kennen

Hier is een kleine herinnering die u nuttig zult vinden om te onthouden:

Het aantal outs in verschillende situaties

15 outs. Waardering van 2:1 (33%) op 1 straat of 1:1 (50%) op 2 straten. Kleurtrekking + rechte trekking. Voorbeeld 7h-8h op 5h-6h-2s

9 outs. Kans van 4:1 (20%) op 1 straat of 2:1 (33%) op 2 straten. Kleurendruk. Voorbeeld Jh-Th op 2u-3h-7s.

8 outs. Dimensie van 5:1 (16%) op 1 straat of 2:1 (33%) op 2 straten. Rechtstreekse trekking met open einde. Voorbeeld, 7x-8y op 5-6-K.

5 outs. Kansen van 8:1 (11%) op 1 straat of 4:1 (20%) op 2 straten. Een eenvoudig paar dat u wilt verbeteren tot een drie of twee paar. Voorbeeld A-5 op 2-5-J.

4 outs. Waardering van 11:1 (8%) op 1 straat of 5:1 (16%) op 2 straten. Gutshot. Voorbeeld, 7-8 op 4-5-J (hier geven de 6 en alleen de 6 ons de volgorde aan)

Bij de berekening van de rentabiliteit van een gesprek wordt rekening gehouden met andere elementen. Hier zijn enkele vragen om jezelf te stellen bij het bestuderen van een specifieke situatie

1- Als ik een beroep doe op de flop, hoe vaak zal mijn tegenstander dan inzetten op de beurt? Zal hij groots inzetten?

2- Als ik de flop raak, wat zijn dan de kansen dat mijn tegenstander me zal betalen?

3- Is het mogelijk dat mijn tegenstander een betere loting heeft dan ik?

Werken met de kans- en waarschijnlijkheidscalculator

Laten we ons voorbeeld van bovenaf nemen.

Jh-Th op een flop 2h-3h-7s

Om ons te helpen bij onze berekeningen, zullen we de potkansen en waarschijnlijkheid van verbetering calculator aan de bovenkant van de pagina gebruiken

We zijn nog steeds heads-up en onze tegenstander wedt $2 in een pot van $9. Aangezien onze kansen om onze hand op een straat te verbeteren 4:1 is, moeten we een maximale weddenschap roepen die vier keer kleiner is dan de totale pot. Met behulp van de bovenstaande calculator kunnen we zien dat we een potkansen hebben van 18,18% (ongeveer 4:1). Dit cijfer wordt verkregen door de weddenschap te delen ($2) door het totaal van de pot na de ondeugende weddenschap (ondeugende weddenschap $2 in een pot van $9 dus $11). Dit maakt $2/$11 = 18,18%

Dus van dat getal weten we dat als we onze hand met een waarschijnlijkheid van meer dan 18,18% verbeteren, we de juiste kansen hebben om te bellen. Hier leren we dat onze spoeling 19,15% van de tijd in de bocht zal voltooien en 34,97% van de tijd als we bocht + rivier tellen. Dus het is een gunstige beslissing

Met behulp van de rekenmachine kunnen we de winstgevendheid van een gesprek in elke situatie controleren. Voer gewoon de grootte van de pot in VOOR de inzet van je tegenstander, de inzet van je tegenstander, en selecteer de trekking die je hebt. Je zult snel weten of dat gesprek goed is of niet

Kleine truc

De potkansencalculator is een uitstekend hulpmiddel om vertrouwd te raken met de potkansen en nauwkeurige getallen te krijgen. In een casino toernooi is het echter niet altijd mogelijk om dergelijke software te gebruiken. Hier is een trucje om je te helpen je potkansen in te schatten. Laten we ons voorbeeld steeds opnieuw nemen

Jh-Th op een flop 2h-3h-7s. We hebben eerder gezegd dat we negen outs hebben. We nemen dit getal en vermenigvuldigen het met 2 als we onze kansen willen weten om onze hand op één straat (de bocht) te verbeteren en vermenigvuldigen het met 4 als we onze kansen willen weten om onze hand op 2 straten (bocht + rivier) te verbeteren. We kunnen hetzelfde doen met elke trekking als we ons aantal outs kennen

Dus, op één straat zeggen we 9 outs x 2 = 18% van de tijd zullen we onze hand verbeteren. Door het raadplegen van de calculator leren we dat het exacte cijfer 19,15% is, wat niet te ver van onze schatting ligt. Dus ik weet dat ik een flopweddenschap kan noemen die 18% of minder van de potmaat is om winstgevend te zijn. Het bespaart me de fouten die je te vaak ziet in je spellen en het noemen van $10 weddenschappen in bijvoorbeeld $12 potten

Voel je vrij om je gespeelde handen te bekijken met behulp van de rekenmachine. Met de praktijk zal de potkansen een tweede natuur voor je worden